
When Rebuilding Su�x Arrays is Faster than Adding

and Removing from Dynamic Su�x Arrays

Gail Carmichael

December 20, 2009

1 Introduction

Indexing structures for textual data has become important for supporting fast searches of
large databases. Su�x trees [8] were once the structure of choice for their linear time con-
struction, despite the large space requirements. In fact, much attention has been paid to
disk-based su�x trees, designed particularly for use with DNA sequence databases (e.g. [9]).

Su�x arrays [7] gained interest when introduced in the early nineties for their smaller
space consumption, but weren't widely adopted until several linear-time construction algo-
rithms were later published almost simultaneously [4, 5, 6]. A disadvantage of su�x arrays
over su�x trees is that they have traditionally been static, and so must be recreated from
scratch when the text they are built on changes. However, a fully dynamic su�x array that
supports adding and removing characters in any position has recently been proposed by Sal-
son et al [10]. The dynamic su�x array relies on the similarities between the su�x array
and the Burrows-Wheeler Transform [1], and is based on a method designed to maintain
a dynamic Burrows-Wheeler Transform [11]. It supports the longest common pre�x array
used in many algorithms that operate on su�x arrays, but also requires other supplemental
structures to support dynamic maintenance.

The dynamic su�x array was experimentally shown to be e�cient, especially for few
insertions of a large number of characters at once. These experiments give some sense of
when it is faster to opt for rebuilding a standard su�x array instead of deleting and inserting
characters from the dynamic version.

This paper summarizes results from a more detailed set of experiments that are designed
to provide a better idea of when to use static su�x arrays instead of dynamic. Background
information on static and dynamic su�x arrays can be found in Section 2, and the experiment
results follow in Section 3. The results are summarized in Section 4 along with suggestions
for further experimentation.

1



Figure 1: An example of a su�x array for the text BANANARAMA. The position array is
p and the longest common pre�xes are in lcp. The �rst column gives the indices into the p
and lcp arrays. The second column gives the su�x referred to by p.

2 Background

A su�x array is, conceptually, a structure that stores all of the su�xes of a body of text
in sorted order. A su�x includes all of the characters found at and after a given index; it
does not refer to the su�x of a single word. A list of indices referring to the starting points
of the su�xes � also known as the position array � is stored in the su�x array so that the
su�xes appear in the list in lexicographically sorted order. To search for a substring of the
original text is now a matter of searching the su�xes using a binary search strategy to see if
the query string appears as a pre�x of one of the su�xes.

There are additional lists that can supplement the list of su�x positions to support certain
operations more e�ciently. The most commonly used is a list of longest common pre�xes
(or lcp's). The lcp for each su�x is the number of consecutive characters, starting at the
beginning, it shares with the pre�x appearing directly before it in lexicographical order. This
information can be used, for instance, to avoid comparing common pre�xes during binary
searches.

More formally, let the position array for a text T if size n be p, and the longest common
pre�xes be stored in lcp. Then p[j] = i if and only if T [i...n] is the (j + 1)st su�x of T in
sorted order. Also, the length of the longest common pre�x between p[i] and p[i− 1] is given
by lcp[i]. An example of a su�x array is shown in Figure 1.

As mentioned in the introduction, one reason that su�x arrays were not chosen over su�x
trees after they were proposed, despite their relatively low storage requirements, was the fact
that they took longer to build. Su�x trees require Θ(n log n) time for construction when the
text it is built for has a general alphabet that only allows for symbol comparisons [3], but
can be made in linear time for integer alphabets (where symbols are integers in the range

2



[0, nc] for a constant c) or alphabets of constant size [2, 3, 8, 12]. One of the �rst solutions
for constructing a su�x array for an integer alphabet in linear time takes advantage of a
divide-and-conquer approach to the problem, proposing a new merging algorithm [5].

Although this improvement in construction time makes the use of su�x arrays more
practical, they still have a disadvantage over su�x trees that makes them still less attractive
for some applications. The typical su�x array construction produces a structure which is not
dynamic; that is, once built, the text T cannot change without having to rebuild p and lcp
from scratch. A new strategy was recently published, however, that does allow for insertions
and deletions of characters into the su�x array [10]. The trade-o� is the need for additional
supporting structures, though some of the structures used can potentially be compressed to
save space.

These dynamic su�x arrays make use of an e�cient four-stage algorithm for a dynamic
Burrows-Wheeler transform [11]. By maintaining the Burrows-Wheeler transform of text
T , the position array p and longest common pre�xes in lcp can be kept up to date as well.
Because of the similarities between the transform and the su�x array, each of the four stages
can also be used to determine what changes, if any, are required for p and lcp. The structures
needed to maintain all the needed information results in a space complexity of more than
12n, but sampling techniques can be used to reduce this.

Experimental results [10] showed that this implementation of dynamic su�x arrays is often
more e�cient than rebuilding a static su�x array from scratch. The tests performed involved
adding 500 characters in di�ering amounts to a dynamic su�x array already containing a
certain amount of text, and comparing the time results to the time taken to rebuilding a
su�x array on all of the text (both the text being added to and the characters being added).
The only time that adding to the dynamic su�x array was slower was when 500 characters
were added one at a time rather than in larger groups, and only up until the original text
was 500 kilobytes or more for text containing DNA sequences, or 1400 kilobytes for random
text on an alphabet of size 100. The most e�cient scenario was adding all 500 characters at
once.

While these results are useful, some more detailed experiments would shed more light
on when exactly it is better to rebuild a static array instead of maintaining a dynamic one.
Several such experiments are presented in the next section.

3 Experiments and Results

The goal of the following experiments is to help determine when it is preferable to choose a
static su�x array and when to opt for the dynamic version. The experimental setup will be
explained �rst, followed by results from several tests.

All experiments in this section were performed on a Ubuntu Linux distribution running
in a virtual machine assigned two 2.4 GHz cores of an Intel Core 2 Quad CPU, and 2096
MB of dedicated memory. Running times were measured using the gettimeofday function
in C. The implementation for constructing the static su�x array was written by Karkkainen

3



and Sanders1 and the corresponding computation of the longest common pre�x is an im-
plementation of Kärkkäinen et al's permuted su�x array [4] written by Pat Morin2. The
implementation of the dynamic su�x arrays was kindly provided by its authors, Salson et
al. The texts considered here are two DNA sequences, one 975 KB and the other 50 MB.

The main premise of these experiments is to shift a sliding window over a large body
of text. A window of size w and a slide amount s ≤ w are chosen. The window starts at
the beginning of the text and slides a maximum of 100 times. If the current index of the
beginning of the window is i, then the next starting index after a slide is j = i+s. A window
may not be able to slide all 100 times, depending on the size of the text and the size of the
window. Only the contents of the window will be in the su�x array at any given time, and as
the window slides, the contents are updated either by rebuilding the su�x array (static case)
or inserting and deleting the appropriate characters from it (dynamic case). This strategy
�ts most intuitively with an application that, say, needs to load only certain portions of a
large disk-based body of text into main memory, but should also provide general insight to
the main question at hand.

The experiments by Salson et al presented only one particular usage scenario for their
dynamic su�x arrays: insertion of 500 characters into a large body of text. They varied the
size of text being inserted into, a�ecting the reordering stage of their algorithm as well as the
rebuilding of the static su�x array being compared to. Their results showed that insertions
of one character at a time can be slower on smaller texts than rebuilding the su�x array, but
that multiple insertions of ten or more characters at a time was always faster than rebuilding.
These tests did not consider deletions, nor the time taken to build the intial dynamic su�x
array before insertions. The following sliding window tests will help �ll this gap.

The �rst results for the 975 KB text are shown in Figure 2. The time shown in mil-
liseconds on the logarithmic y-axis denotes the average time taken per window slide. This
includes either rebuilding the static array, or deleting and adding characters that are leaving
or entering the window. When adding or removing characters, all are inserted or deleted
together, since it was already shown that this is more e�cient. The time taken for the initial
build is spread across the number of slides when it is included at all.

Figure 2a shows the time taken per window slide for s = 1 to 1001 in increments of 100.
Two relatively large window sizes are considered � w = 600, 000 and w = 700, 000 � since
Salson et al's tests showed that insertion into dynamic su�x arrays is more e�cient than
rebuilding in all cases when the size of text being inserted into is large. In this case, the time
taken to build the initial su�x array is included. The dynamic su�x array is built on the
�rst window and so will be size w. When this building time is included in the average time
per slide, the dynamic su�x array performs consistently worse than simply rebuilding static
su�x arrays of size w each time.

The initial build time is not included in the results of Figure 2b. The dynamic su�x array
performs much better than the static version when the value of s is low, indicating that the
overhead for building the �rst dynamic su�x array is signi�cant. As s reaches 1000, however,

1Available at http://www.mpi-inf.mpg.de/~sanders/programs/su�x/drittel.C
2http://cg.scs.carleton.ca/~morin/

4



adding and deleting catches up to simply rebuilding. Salson et al's tests considered insertions
of up to 500 characters only, and the sliding window results for inserting that number of
characters agrees with their results. Is appears, however, that insertion and deletion of too
many characters for these window sizes incurs enough overhead to consider using a static
su�x array instead.

Figure 3 shows results for the same 975 KB text for larger values of s but similar window
sizes. Whether including the building time (Figure 3a) or not (Figure 3b), the dynamic su�x
array is signi�cantly slower than rebuilding the static su�x array. This agrees with the trend
started in the previous results, which suggested that inserting and deleting more than 1000
characters at a time would be slower than rebuilding for these window sizes.

Results for the 50 MB DNA sequence for slide amounts s = 1 to 1001 are in Figure 4.
These tests used a much larger window size of w = 1000000, made possible because of the
larger text size. When w gets large, it is expected that rebuilding an entire su�x array
that size will become very slow, making the dynamic su�x arrays a better choice. Based
on these results and the previous ones, it turns out that when including the initial building
time for a dynamic su�x array, rebuilding the static version is still a better choice. And,
as before, when the slide amount s reaches about 1000, the dynamic su�x array starts to
become slower even when not considering its initial build time. Figure 5 shows that for very
large slide amounts the dynamic su�x array is much slower no matter whether build time is
included.

4 Conclusion

The authors of the dynamic su�x array showed that inserting 500 characters into a large
body of text is more e�cient with their structure than rebuilding a standard su�x array
from scratch. They did not, however, include deletions in their tests, nor did they consider
the time taken to build the dynamic su�x array before the insertions.

The experiments presented here used a sliding window paradigm to �ll both these gaps. It
was determined that if the building time is included (in this case, averaged over the number of
window slides), the use of dynamic su�x arrays tends to be slower than rebuilding standard
su�x arrays from scratch. However, dynamic su�x arrays are superior to the static version
when inserting and deleting less than 1000 characters at a time. Based on this, dynamic
su�x arrays are well suited to applications that make only small changes to the associated
body of text, while static su�x arrays are a better choice when large changes are required
often.

Several more experiments are required in the future to verify these results and provide
more insight into the problem. In particular, texts other than DNA sequences should be
examined since the results from Salson et al did show a di�erence between the two types.
Even larger window sizes should be examined to see if the 1000 character limit remains, and
further analysis on the initial building time of the dynamic su�x arrays would be bene�cial.

5



0 200 400 600 800 1000 1200

10
2.4

10
2.5

10
2.6

10
2.7

slide amount

tim
e 

(m
s)

Time per slide for Ccl−1Ma.txt With Building Time

 

 

dynamic window size 600,000
dynamic window size 700,000
static window size 600,000
static window size 700,000

(a)

0 200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

slide amount

tim
e 

(m
s)

Time per slide for Ccl−1Ma.txt Without Building Time

 

 

dynamic window size 600,000
dynamic window size 700,000
static window size 600,000
static window size 700,000

(b)

Figure 2: Average time spent on each slide for 975 KB DNA sequence for slide amounts
1-1001.

6



0 2 4 6 8 10 12 14 16

x 10
4

10
2

10
3

10
4

10
5

slide amount

tim
e 

(m
s)

Time per slide for Ccl−1Ma.txt With Building Time

 

 

dynamic window size 400,000
dynamic window size 600,000
dynamic window size 800,000
static window size 400,000
static window size 600,000
static window size 800,000

(a)

0 2 4 6 8 10 12 14 16

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

slide amount

tim
e 

(m
s)

Time per slide for Ccl−1Ma.txt Without Building Time

 

 

dynamic window size 400,000
dynamic window size 600,000
dynamic window size 800,000
static window size 400,000
static window size 600,000
static window size 800,000

(b)

Figure 3: Average time spent on each slide for 975 KB DNA sequence for slide amounts
1-150001.

7



0 200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

10
4

slide amount

tim
e 

(m
s)

Time per slide for dna.50MB With and Without Building Time for Window Size 1,000,000

 

 

dynamic with build
dynamic without build
static with build
static without build

Figure 4: Average time spent on each slide for 50 MB DNA sequence for slide amounts 1-1001.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

x 10
5

10
2

10
3

10
4

10
5

10
6

slide amount

tim
e 

(m
s)

Time per slide for dna.50MB With and Without Building Time for Window Size 1,000,000

 

 

dynamic with build time
dynamic without build time
static with build time
static without build time

Figure 5: Average time spent on each slide for 50 MB DNA sequence for slide amounts
500000, 600000, and 700000.

8



References

[1] Burrows, M., and Wheeler, D. J. A block-sorting lossless data compression algo-
rithm. Tech. rep., 1994.

[2] Farach, M. Optimal su�x tree construction with large alphabets. In FOCS '97: Pro-

ceedings of the 38th Annual Symposium on Foundations of Computer Science (Wash-
ington, DC, USA, 1997), IEEE Computer Society, p. 137.

[3] Farach-Colton, M., Ferragina, P., and Muthukrishnan, S. On the sorting-
complexity of su�x tree construction. J. ACM 47, 6 (2000), 987�1011.

[4] Kärkkäinen, J., Sanders, P., and Burkhardt, S. Linear work su�x array con-
struction. J. ACM 53, 6 (2006), 918�936.

[5] Kim, D. K., Sim, J. S., Park, H., and Park, K. Constructing su�x arrays in linear
time. Journal of Discrete Algorithms 3, 2-4 (June 2005), 126�142.

[6] Ko, P., and Aluru, S. Space e�cient linear time construction of su�x arrays. Journal
of Discrete Algorithms 3, 2-4 (June 2005), 143�156.

[7] Manber, U., and Myers, G. Su�x arrays: a new method for on-line string searches.
SIAM Journal on Computing 22, 5 (October 1993), 935�-948.

[8] McCreight, E. M. A space-economical su�x tree construction algorithm. J. ACM

23, 2 (1976), 262�272.

[9] Phoophakdee, B., and Zaki, M. J. Genome-scale disk-based su�x tree indexing.
In SIGMOD '07: Proceedings of the 2007 ACM SIGMOD international conference on

Management of data (New York, NY, USA, 2007), ACM Press, pp. 833�844.

[10] Salson, M., Lecroq, T., Léonard, M., and Mouchard, L. Dynamic extended
su�x arrays. Journal of Discrete Algorithms (March 2009).

[11] Salson, M., Lecroq, T., Léonard, M., and Mouchard, L. A four-stage algo-
rithm for updating a burrows�wheeler transform. Theoretical Computer Science 410, 43
(October 2009), 4350�4359.

[12] Ukkonen, E. On-line construction of su�x trees. Algorithmica 14, 3 (September 2005),
249�260.

9


